Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Biomedical Engineering ; (6): 544-551, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981574

RESUMO

The synergistic effect of drug combinations can solve the problem of acquired resistance to single drug therapy and has great potential for the treatment of complex diseases such as cancer. In this study, to explore the impact of interactions between different drug molecules on the effect of anticancer drugs, we proposed a Transformer-based deep learning prediction model-SMILESynergy. First, the drug text data-simplified molecular input line entry system (SMILES) were used to represent the drug molecules, and drug molecule isomers were generated through SMILES Enumeration for data augmentation. Then, the attention mechanism in the Transformer was used to encode and decode the drug molecules after data augmentation, and finally, a multi-layer perceptron (MLP) was connected to obtain the synergy value of the drugs. Experimental results showed that our model had a mean squared error of 51.34 in regression analysis, an accuracy of 0.97 in classification analysis, and better predictive performance than the DeepSynergy and MulinputSynergy models. SMILESynergy offers improved predictive performance to assist researchers in rapidly screening optimal drug combinations to improve cancer treatment outcomes.


Assuntos
Fontes de Energia Elétrica , Redes Neurais de Computação , Antineoplásicos/farmacologia
2.
Chinese Journal of Biotechnology ; (12): 1346-1359, 2021.
Artigo em Chinês | WPRIM | ID: wpr-878636

RESUMO

Different cell lines have different perturbation signals in response to specific compounds, and it is important to predict cell viability based on these perturbation signals and to uncover the drug sensitivity hidden underneath the phenotype. We developed an SAE-XGBoost cell viability prediction algorithm based on the LINCS-L1000 perturbation signal. By matching and screening three major dataset, LINCS-L1000, CTRP and Achilles, a stacked autoencoder deep neural network was used to extract the gene information. These information were combined with the RW-XGBoost algorithm to predict the cell viability under drug induction, and then to complete drug sensitivity inference on the NCI60 and CCLE datasets. The model achieved good results compared to other methods with a Pearson correlation coefficient of 0.85. It was further validated on an independent dataset, corresponding to a Pearson correlation coefficient of 0.68. The results indicate that the proposed method can help discover novel and effective anti-cancer drugs for precision medicine.


Assuntos
Algoritmos , Antineoplásicos/farmacologia , Sobrevivência Celular , Preparações Farmacêuticas
3.
Journal of Biomedical Engineering ; (6): 676-682, 2020.
Artigo em Chinês | WPRIM | ID: wpr-828119

RESUMO

Synergistic effects of drug combinations are very important in improving drug efficacy or reducing drug toxicity. However, due to the complex mechanism of action between drugs, it is expensive to screen new drug combinations through trials. It is well known that virtual screening of computational models can effectively reduce the test cost. Recently, foreign scholars successfully predicted the synergistic value of new drug combinations on cancer cell lines by using deep learning model DeepSynergy. However, DeepSynergy is a two-stage method and uses only one kind of feature as input. In this study, we proposed a new end-to-end deep learning model, MulinputSynergy which predicted the synergistic value of drug combinations by integrating gene expression, gene mutation, gene copy number characteristics of cancer cells and anticancer drug chemistry characteristics. In order to solve the problem of high dimension of features, we used convolutional neural network to reduce the dimension of gene features. Experimental results showed that the proposed model was superior to DeepSynergy deep learning model, with the mean square error decreasing from 197 to 176, the mean absolute error decreasing from 9.48 to 8.77, and the decision coefficient increasing from 0.53 to 0.58. This model could learn the potential relationship between anticancer drugs and cell lines from a variety of characteristics and locate the effective drug combinations quickly and accurately.


Assuntos
Humanos , Antineoplásicos , Biologia Computacional , Combinação de Medicamentos , Neoplasias , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA